余弦定理的证明方法【证明余弦定理】

一、正弦定理,余弦定理的证明

1、正弦定理证明、在锐角△ABC中,设BC=a,AC=b,AB=c。

2、作CH⊥AB垂足为点HCH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到a/sinA=b/sinB同理,在△ABC中,b/sinB=c/sinC步骤证明a/sinA=b/sinB=c/sinC=2R、如图,任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为在同圆或等圆中直径所对的圆周角是直角,所以∠DAB=90度因为在同圆或等圆中同弧所对的圆周角相等,所以∠D等于∠ACB.所以c/sinC=c/sinD=BD=2R类似可证其余两个等式。

3、余弦定理证明、在任意△ABC中做AD⊥BC.∠C所对的边为c,∠B所对的边为b,∠A所对的边为a则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c根据勾股定理可得、AC^2=AD^2+DC^2b^2=(sinB*c)^2+(a-cosB*c)^2b^2=(sinB*c)^2+a^2-2ac*cosB+(cosB)^2*c^2b^2=(sinB^2+cosB^2)*c^2-2ac*cosB+a^2b^2=c^2+a^2-2ac*cosBcosB=(c^2+a^2-b^2)/2ac类似可证其余两个等式。

二、余弦定律证明,详细证明方法。

1、正弦定理证明、在锐角△ABC中,设BC=a,AC=b,AB=c。

三、余弦定理证明

1、余弦定理、三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍余弦定理证明平面向量证法、∵如图,有a+b=c(平行四边形定则、两个邻边之间的对角线代表两个邻边大小)∴c·c=(a+b)·(a+b)∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ)(以上粗体字符表示向量)又∵Cos(π-θ)=-CosC∴c^2=a^2+b^2-2|a||b|Cosθ(注意、这里用到了三角函数公式)再拆开,得c^2=a^2+b^2-2*a*b*CosC同理可证其他,而下面的CosC=(c^2-b^2-a^2)/2ab就是将CosC移到左边表示一下。

2、平面几何证法、在任意△ABC中做AD⊥BC.∠C所对的边为c,∠B所对的边为b,∠A所对的边为a则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c根据勾股定理可得、AC^2=AD^2+DC^2b^2=(sinB*c)^2+(a-cosB*c)^2b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosBb^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2b^2=c^2+a^2-2ac*cosBcosB=(c^2+a^2-b^2)/2ac余弦定理的作用(1)已知三角形的三条边长,可求出三个内角。

3、(2)已知三角形的两边及夹角,可求出第三边.例如、已知△ABC的三边之比为、求大的内角.解设三角形的三边为a,b,c且a、b、c=、由三角形中大边对大角可知、∠A为大的角.由余弦定理cosA==-所以∠A=120°.再如△ABC中,AB=2,AC=3,∠A=π3,求BC之长.解由余弦定理可知BC2=AB2+AC2-2AB×AC·cosA=4+9-2×2×3×=所以BC=以上两个小例子简单说明了余弦定理的作用.其他从余弦定理和余弦函数的性质可以看出,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角一定是直角,如果小于第三边的平带团方,那么第三边所对的角是锐角,如果大于第三边的平方,那么第三边所对的角是钝判行闹角。

4、即,利用余弦定理,可以判断三角掘罩形形状。

5、同时,还可以用余弦定理求三角形边长取值范围。

四、余弦定理的证明方法

1、余弦定理,是描述三角形中三边长度与一个角的余弦值关系的数学定理,余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。

2、余弦定理证明方法如图所示、如图,在锐角△ABC中,作AD⊥BC于D,则CD=bcosC,AD=bsinC,在△ABD中,由勾股定理,得AB2=BD2+AD即AB2=(a-bcosC)2+(bsinC)2=a2-2abcosC+b2cos2C+b2sinC2=a2-2abcosC+b即c2=a2+b2-2abcosC。

五、证明余弦定理的方法

1、余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活.对于任意三角形三边为a,b,c三角为A,B,C满足性质a^2=b^2+c^2-2*b*c*CosAb^2=a^2+c^2-2*a*c*CosBc^2=a^2+b^2-2*a*b*CosCCosC=(a^2+b^2-c^2)/2abCosB=(a^2+c^2-b^2)/2acCosA=(c^2+b^2-a^2)/2bc证明、如图、∵a=b-c∴a^2=(b-c)^2(证明中前面所写的a,b,c皆为向量,^2为平方)拆开即a^2=b^2+c^2-2bc再拆开,得a^2=b^2+c^2-2*b*c*CosA同理可证其他,而下面的CosA=(c^2+b^2-a^2)/2bc就是将CosA移到右边表示一下。

2、---------------------------------------------------------------------------------------------------------------平面几何证法、在任意△ABC中做AD⊥BC.∠C所对的边为c,∠B所对的边为b,∠A所对的边为a则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c根据勾股定理可得、AC^2=AD^2+DC^2b^2=(sinB*c)^2+(a-cosB*c)^2b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosBb^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2b^2=c^2+a^2-2ac*cosBcosB=(c^2+a^2-b^2)/2ac从余弦定理和余弦函数的性质可以看出,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角一定是直角,如果小于第三边的平方,那么第三边所对的角是钝角,如果大于第三边,那么第三边所对的角是锐角.即,利用余弦定理,可以判断三角形形状。

3、同时,还可以用余弦定理求三角形边长取值范围。

六、余弦定理的证明方法是怎么样的?

1、在△ABC中,BC=a,AC=b,AB=c,作AD⊥BC于D,则AD=c*sinB,DC=a-BD=a-c*cosB在Rt△ACD中,b²=AD²+DC²=(c*sinB)²+(a-c*cosB)²=c²sin²B+a²-2ac*cosB+c²cos²B=c²(sin²B+cos²B)+a²-2ac*cosB=c²+a²-2ac*cosB扩展资料、余弦定理是解三角形中的一个重要定理,可应用于以下三种需求、当已知三角形的两边及其夹角,可由余弦定理得出已知角的对边。

2、当已知三角形的三边,可以由余弦定理得到三角形的三个内角。

3、当已知三角形的三边,可以由余弦定理得到三角形的面积。

七、求余弦定理的证明方法,越多越好!!!!!!!

1、在△ABC中,AB=c、BC=a、CA=b则c^2=a^2+b^2-2ab*cosCa^2=b^2+c^2-2bc*cosAb^2=a^2+c^2-2ac*cosB下面在锐配团角△中证明第一个等式,在钝角△中碰橘证明以此类推。

2、过A作AD⊥BC于笑卖团D,则BD+CD=a由勾股定理得、c^2=(AD)^2+(BD)^(AD)^2=b^2-(CD)^2所以c^2=(AD)^2-(CD)^2+b^2=(a-CD)^2-(CD)^2+b^2=a^2-2a*CD+(CD)^2-(CD)^2+b^2=a^2+b^2-2a*CD因为cosC=CD/b所以CD=b*cosC所以c^2=a^2+b^2-2ab*cosC。

八、余弦定理的证明方法及过程

1、任意做三角形ABC,记BC=a,AC=b,AB=c,BC所对角为α,过B做BD⊥AC交AC于点D则有两个直角三角形Rt△ABD与Rt△BDCBD=csinα,AD=ccosα,CD=b-ccosα由勾股定理,BD^2+CD^2=BC^2(csinα)^2+(b-ccosα)^2=b^2-2bccosα+c^2((sinα)^2+(cosα)^2)=b^2-2bccosα+c^2=a^2即证余弦定理a^2=b^2+c^2-2bccosα同理可证余弦定理其他式子。

九、余弦定理的证明方法及过程

1、任意做三角形ABC,记BC=a,AC=b,AB=c,BC所对角为α,过B做BD⊥AC交AC于点D则有两个直角三角形Rt△ABD与Rt△BDCBD=csinα,AD=ccosα,CD=b-ccosα由勾股定理,BD^2+CD^2=BC^2(csinα)^2+(b-ccosα)^2=b^2-2bccosα+c^2((sinα)^2+(cosα)^2)=b^2-2bccosα+c^2=a^2即证余弦定理a^2=b^2+c^2-2bccosα同理可证余弦定理其他式子。

转载请注明出处阿文说说网 » 余弦定理的证明方法【证明余弦定理】