罗素悖论的本质107句(罗素悖论怎么解决的)

罗素悖论怎么解决的

1、罗素悖论是什么

(1)、二战结束后,福特公司一次性将这10个人全部招进来了,分别进入了公司的计划、财务、事业部、质量等关键业务和管理控制队伍。这10位人在福特公司掀起了一场以数据分析、市场导向,以及强调效率和管理控制为特征的管理变革,这一场变革使得福特公司摆脱了老福特经验管理的禁锢,从低迷中重整旗鼓再现当年的辉煌。这10个人被称之为美国现代管理企业的奠基者,这个就是“蓝血十杰”的由来。

(2)、许多卓越的数学家深为这新的理论所起的作用而感动,希尔伯特(Hilbert)称“没有人能把我们从康托尔为我们创造的乐园中开除出去”。

(3)、这世界充满悖论,像罗素悖论:“理发师的头谁来剃?”本来是困惑哲学家的问题怎么跑到管理界来了?

(4)、目前,关于数学基础的各派思想依然层出不穷,至今没有形成一个在数学界被普遍接受的理论。

(5)、罗素悖论:这就是为什么数学不能拥有一个“所有事物”的集合

(6)、这个就有点麻烦了。假设罗素集合是它自身的成员,那么它就应该符合条件2“不是自身的成员”;而如果假设罗素集合不是它自身的成员,那么它就既符合条件1“是个集合”,又符合条件2“不是自身的成员”,那么它就完全应该加入“罗素集合”呀。

(7)、如果有人这么问,你肯定会以为他脑子有问题,对不对?

(8)、来源:华夏基石e洞察(ID:chnstonewx)

(9)、概括起来包括四个方面:第一个是基于数据和事实的理性分析和科学管理。按照“蓝血十杰”的管理哲学,事实都是可以度量的;不能够度量的事情就不是事实,多是一种现象。第二个是建立了在计划、预算、流程和利润中心基础上的规范的管理控制系统。据说这次从中央到地方财政部门,都在大力推行的一件事情,就是管理会计,管理会计的重要性恰恰是在预算、计划流程和责任中心基础上建立起一套管理系统。第三个是重新定义了财务部门的功能,使之在传统的会计和融资功能基础上,承担起成本分析、利润分析、投资决策等现代管理会计的职责。第四个是客户导向和力求简单的产品开发策略。

(10)、“所谓‘削足适履’,不是坏事,而是与国际接轨。我们引进了一双美国新鞋,刚穿总会夹脚。我们一时又不知如何使它变成中国布鞋,如果我们把美国鞋开几个洞,那么这样的管理体系我们也不敢用。因此,在一段时间我们必须削足适履。”(任正非)

(11)、理科少年周彦:围棋4段、会写代码,却说自己像榴莲?老凡尔赛了!

(12)、一名理发师说,自己给城里所有自己不理发的人理发,那么他是否给自己理发?

(13)、本文为邢滔滔对《悖论的消解》一书所作的简评。

(14)、任正非总裁为引进世界先进管理体系的变革确定了“削足适履”,提出先僵化、后优化。“我们一定要真正理解人家百年积累的经验,一定要先搞明白人家的整体管理框架,为什么是这样的体系。刚刚知道一点点,就发议论,其实就是干扰了向别人学习。”

(15)、可问题是,语言的演化可不是为了什么“真理”呀,只是为了自己吃饱并且不被别的动物吃而已。

(16)、集合论是颠覆了很多前人的想法,因而很难为人所接受。比如克罗内克就曾攻击康托尔的理论长达十年以上,甚至康托尔自己也发现集合论中其实存在着漏洞无法解决,以至于一度精神崩溃,终在精神病院逝世。

(17)、可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?

(18)、关于没有定义,可以展开一下。例如对于变量x没有任何定义,这是缺少定义;对于x定义为x,这是重言定义;对于x定义为(x=0ifx=1andx=1ifx=0),这是矛盾定义。这三种定义,都没有给出正确的定义。

(19)、解铃还需系铃人,为了保住先辈们历尽千辛万苦铸成的数学大厦,罗素也想了很多办法来解决自己提出的罗素悖论。

(20)、有一本书叫《创新者的窘境》,提出了一个让大企业困惑的悖论,全书就是在阐述这个悖论和试图回答这个悖论:大公司之所以被颠覆不是因为他们管理不善,而是因为他们管理的太优秀了!

2、罗素悖论的本质

(1)、策梅洛(Zermelo)、弗伦克尔(Fraenkel)、冯·诺伊曼(vonNeumann)等人提出了一系列公理对集合的构造加以限制,从而排除了罗素悖论中集合的存在。

(2)、事实上,基于对“集合”的朴素定义,我们自然会考虑一个“所有事物的集合”(asetofeverything),或者一个“所有集合的集合”(asetofallsets)。(二者都是自含集合。)

(3)、所以,如果B包括其自身,那么它就与我们用来定义B的条件矛盾了,所以B不包括其自身。

(4)、在谈罗素悖论之前,我们需要先提到另一个数学家——康托尔。在《这群酒店客人中出了幽灵》的猫粮里,我们讲到了这位伟大数学家的学术成就。

(5)、伯特兰·罗素(BertrandRussell,1872-1970),英国哲学家、数学家、逻辑学家、历史学家、文学家,他与怀特海合著的《数学原理》(ThePrinciplesofMathematics,1903)一书对哲学、数学和数理逻辑有着巨大的影响,使得他在学术上赢得了极其崇高的地位和荣誉。

(6)、为了解决集合论的问题,数学家们目前的选择,是将集合论公理化。

(7)、现代集合论的诸种公理,具体地规定了如何建立“其他集合的集合”(setsofothersets)。

(8)、在几何学中,我们希望给定两点之间的所有点的聚集——也就是给定两点之间的线段——成为一个集合。

(9)、“所有自含集合的集合,是否包括其自身?”(whetherornotthesetofself-containingsetscontainsitself),这个问题可以就位于我们系统的范畴之外(即,我们可以不去考虑这个问题,因为不可判定)。

(10)、罗素经过了弗雷格的一番点拨,发现罗素悖论产生的根源在于集合的定义。按康托尔的说法,任何具有一定性质的事物的类都可以构成集合,正是这种概括导致了罗素悖论,因为它所允许存在的“集合”太宽泛了。

(11)、而1901年,罗素提出了一个著名的悖论,产生了爆炸性的效果,因为这个悖论植根于集合论,一经提出,相当于从根本上否定了集合论的完备性。

(12)、庄朝晖,基于对角线引理和维特根斯坦思想对于悖论的分析,第六届全国分析哲学学术研讨会,山西大学,中国,2010年8月(入选《中国分析哲学2010》,中国现代外国哲学学会分析哲学专业委员会编,浙江大学出版社,2011年10月,67页-76页)

(13)、相比于罗素悖论理发师悖论就更好解决了。方方抢答:“理发师是女的就解决了!”

(14)、对于所谓的“集合”(set)是什么,我们感到有些模糊。

(15)、(1)“不是自然数的所有东西的集合”(注:这个巨大的集合包括“披萨”、“加利福尼亚州”,同时,也包括其自身,因为此集合当然也不是自然数);

(16)、你说这么一群战五渣是怎么在丛林里面生存下来的?

(17)、比如,数学的发展就曾面临过几次极其严峻的考验。距离目前近的一次,就是20世纪罗素悖论对康托尔集合论的冲击(也称第三次数学危机)。

(18)、根据我们的直觉,“集合”应该是“事物的聚集”(acollectionofthings),而朴素集合论,基本上就把这一直觉,当作了“集合”的定义。

(19)、罗素悖论之所以称为是悖论,是因为它违反了形式逻辑中的矛盾律:矛盾律又称不矛盾律。它通常被表述为A不是非A,或A不能既是B又不是B。要求在同一思维过程中,对同一对象不能同时作出两个矛盾的判断,即不能既肯定它,又否定它。在传统逻辑里 ,矛盾律首先是作为事物规律提出来的,意为任一事物不能同时既具有某属性又不具有某属性。它作为思维规律,则是任一命题不能既真又不真。在罗素悖论中,罗素集R既属于自身又不属于自身,便是违反了矛盾律。

(20)、小丑乔治承诺要在周一至周五来一场让大家难以预料的“突如其来”的爆炸。虽然小丑们用严密的逻辑推理出突如其来的爆炸并不存在,但乔治还是做到了。这是怎么回事呢?

3、罗素悖论解决了吗

(1)、不确定性时代企业的生存之道:用互联网降低企业的外部交易成本;用互联网和科学管理降低企业的内部交易成本。

(2)、罗素悖论(Russell’sParadox)

(3)、例如上帝悖论,既然上帝是的,那么他能不能创造一块自己举不动石头?

(4)、(1)如果A包括其自身,那么很好!A会满足“成为A的一个成员”的条件——包括其自身/自含。

(5)、答案是分工协作,稍微复杂点的协作就需要沟通,这就是猴子们演化出语言能力的原因。

(6)、分享人:黄卫伟,华夏基石管理咨询集团领衔专家,著名经济学家和企管学家,华为首席管理科学家

(7)、十位精英擅长的是什么呢?就是数据分析。他们在战术上运用统计学,运用运筹学为美国的陆军航空队计算他的飞机,计算他的驾驶员,计算他的布局,计算他的炮弹等等。每一场战役,如果统计学上不能赢,这个仗是不会去打。这不像德国军队,不像共产d军队,我们不用统计学,我们是靠激动灵活的战略战术。美国人是靠统计学来打仗。

(8)、全书一以贯之的想法,是提炼诸种悖论共同的逻辑形式,将它们“都归结到一个隐蔽的、未经证明的存在性假设”(罗素《数理哲学导论》2006年德文版序言对作者理论的评论)。所谓“隐蔽的存在性假设”,对于罗素悖论的解决,已成老生常谈,但用它来解析“说谎者”等其他悖论,则是这本书的创见。作者将悖论定位到反证法的“掐头去尾”,继而以一种全新的“句方程”理论,还原说谎者悖论的逻辑结构,显示其所藏所隐。这个理论不但提供了这类悖论的一种轻快简明的解答,更揭示了日常语言的一种隐蔽的、前所未见的代数结构,其深层意义尚待发掘。 

(9)、因为人家就是那么定义的,咱非要问两个不同的定义是否可以相同,这不是找抽吗?

(10)、正当数学家们觉得没有人比他们更懂集合的时候,英国哲学家柏兰德·罗素提了个问题:有没有不是集合的整体?也就是说,宇宙万物中,有没有不可能被放在一起考虑的一类东西?

(11)、再比如定义f(x)=1ifx>0;f(x)=-1ifx那个这个函数在x=0处是没有定义的。再展开一下。比如定义f(x)=1ifx>0;f(x)=f(x)ifx=0;f(x)=-1ifx同样,这个函数在x=0处是没有定义的。再展开一下。比如定义f(x)=1ifx>0;f(x)=f(x)+1ifx=0;f(x)=-1ifx同样,这个函数在x=0处是没有定义的。如果有人定义了这样一个函数,那么怎么办呢?因此要取消所有的f(x)的意义吗?不用啊,只需要在没有定义(缺少定义,重言定义,矛盾定义)的地方追加定义即可。这就是维氏的解决方案。

(12)、这个悖论有趣的地方在于,即使囚徒用无懈可击的逻辑推理出了“出乎意料的行刑日”并不存在,但是如果在周二或者别的什么日子被押向刑场,他依然会感到意外,因为他在那天早上依然不知道今天自己会被处死。事实上,当囚徒用严密的逻辑推理出自己不会被绞死时,也就意味着无论哪一天被绞死,他都是意外的。关于这个悖论,哲学家迈克尔·斯克里文曾写道:“逻辑的力量遭到事实的否决,我觉得这正是这个悖论的迷人之处。可怜的逻辑学家念着过去屡试不爽的咒语,但是事实这个怪兽听不懂咒语,执意前行。”

(13)、但是放到上帝身上大家就没心思琢磨语言本身了,因为上帝这个概念才更吸引眼球,所以这么一个找抽的问题才被美其名曰为“悖论”了。

(14)、理发师悖论与罗素悖论是等价的:如果把每个人看成一个集合,这个集合的元素被定义成这个人刮脸的对象。那么,理发师宣称,他的元素,都是城里不属于自身的那些集合,并且城里所有不属于自身的集合都属于他。那么他是否属于他自己?这样就由理发师悖论得到了罗素悖论。反过来的变换也是成立的。

(15)、久而久之,语言发展得越来越复杂,以至于这群猴子对语言产生了一种崇拜,认为“真理”就包含在语言之中。

(16)、简而言之,这几位数学家的办法并不是“解决”,而是“避开”。他们通过各种手段,把所有涉及到罗素悖论的情况,都排除在外了。

(17)、在形式逻辑中,同一律,矛盾律,排中律是形式逻辑的三大基本规律,罗素悖论违反了矛盾律而又得不到解决,所以对形式逻辑造成了巨大的冲击,被称为是第三次数学危机。

(18)、这个故事的内核,源自英国数学家伯特兰·罗素提出的罗素悖论。

(19)、解决这一悖论主要有两种选择,ZF公理系统和NBG公理系统。策梅罗在自己这一原则基础上提出第一个公理化集合论体系,后来这一公理化集合系统很大程度上弥补了康托尔朴素集合论的缺陷。这一公理系统在通过弗兰克尔的改进后被称为ZF公理系统。

(20)、这个悖论本身其实倒没什么,想把话说明白就多说两句。

4、罗素悖论的例子

(1)、小丑也是人,也应该有享乐的权利呀!于是,这些小丑决定为自己办一个“小丑宴会”,专门招待那些“没资格在自己表演后留下来参加宴会的可怜小丑”。到这里,这个宴会没有任何问题,完全可以顺利开展。但他们做了一件足以搞砸这个宴会的举动,就是为这场宴会又安排了一个开场小丑表演,演出者就是我们的故事男主角乔治。

(2)、如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果他给自己刮脸呢?他又属于“给自己刮脸的人”,他就不该给自己刮脸。

(3)、因此,互联网时代企业的生存之道就是很简单了:用互联网降低企业的外部交易成本;同时,用互联网和科学管理降低企业内部交易成本。这个就是互联网企业生存之道。我们也不要去搞那么多互联网思维,所有的争论终回归到一个问题,是谁替代谁的问题。

(4)、集合论的创建者是康托尔(Cantor,1845-1918),当他29岁时,在《数学杂志》上发表了关于无穷集合理论的第一篇革命性文章,此后,他从事集合与超限数方面的研究长达20多年。

(5)、既然这个集合本身,很显然也不是一个自然数,因为它是一个“不是自然数的‘所有东西’的巨大聚集”,那么,它必然也是它自己这个集合的成员之一(即,它是一个自含集合)。

(6)、本期内容灵感来自未读的《上帝笑了99次》,一本人类读了会沉默上帝看了会发笑的宝藏book!

(7)、发明“集合论”(settheory)的人同样如此,他们从一个相当模糊的“集合”概念出发,而这种模糊导致了一些严重问题。

(8)、书中涵盖99个或经典或冷门的思想实验、逻辑悖论、哲学迷思。那些你在浴室里一闪而过的不成形的思考,或者关于人生观、道德观的不方便找人倾吐的困惑,说不定就会在书里找到解答。有兴趣的朋友可以戳下面的小程序卡片购买。

(9)、如果把所有的集合分成两类:一类不以本身为元素,另外一类以本身为元素。设第一类集合的并集为R,若R属于R,那么根据之前的定义,R必须不能是R的元素;同样地,若R不属于R,那么根据定义,R必须是R的元素。由此构成悖论。

(10)、我们不会去使用“所有事物”(everything)这种大到没边儿的词,诸如此种集合,必须被构建为诸多下属集合(subsets),而它们又要属于我们已经明确定义的一个更大的集合。

(11)、不可判定命题,尽管有些让人不舒服,但不足以构成一个悖论,从而完全毁掉一个逻辑系统。

(12)、去年,华为公司的IT与流程优化部通过与E公司的业界佳实践对标,针对五个方面,提出“5个1”目标:合同前处理周期(1天),供应链备货周期,从发货到站点周期(1周),软件上载周期(1分钟),以及合同交付周期(1个月)。华为公司计划用5年时间(E公司用了8年),实现“5个1”目标,使自己真正进入世界领先企业行列。

(13)、在概率论(probabilitytheory)中,我们将“事件”(events)考虑为诸多结果的集合(setsofoutcomes);所以诸多事件的聚集,也是一个大集合,由其他集合构成。

(14)、数学家GeorgCantor和其他早期集合论者,在如今被我们称为“朴素集合论”(naivesettheory)的框架内工作。

(15)、在一个村子里有一位理发师,这位理发师声称:“给而且只给那些不给自己理发的人理发”。现在问理发师是否要给自己理发。如果理发师不给自己理发,那么根据定义,他要给自己理发;如果理发师给自己理发,那么根据定义,他不能给自己理发。这就是著名的“理发师悖论”。

(16)、理发师悖论与罗素悖论是等价的:如果把每个人看成一个集合,这个集合的元素被定义成这个人刮脸的对象。那么,理发师宣称,他的元素,都是城里不属于自身的那些集合,并且城里所有不属于自身的集合都属于他。那么他是否属于他自己?这样就由理发师悖论得到了罗素悖论。反过来的变换也是成立的。

(17)、三是如何实现从以功能部门为中心的运作方式,向以项目为中心的运作方式转变。真正实现“让听得到炮声的人呼唤炮火”的机会拉动式运作方式;

(18)、这个悖论,以及产生自“自含集合”(setsthatcontainthemselvesasmembers),和产生自巨大的、不充分定义的“所有事物”之集合的其他难题,使得我们必须重新审视“集合”这个概念:它要更加正式,并且基于公理。

(19)、有人说你这没有解决悖论啊,你只是规定不让人家说而已?

(20)、有一种流行的观点认为,在互联网时代产生于工业化时代的科学管理思想和方法已经过时了,现在需要的是互联网思维,是创新,是想象力,是,是颠覆。真的是这样吗?科学管理过时了吗?我们真的不再需要基于数据和事实的理性分析和流程化的精细管理了吗?中国企业没有经过科学管理运动,我们在管理中习惯凭借直觉和经验进行判断,决策的随意性很大,对人的依赖性很大,总愿意创新尝试新事务、新概念,缺少踏踏实实的持续改进精神。恰恰是在互联网时代反而我们应该补上科学管理这一课。

5、罗素解决罗素悖论的方法

(1)、...............................

(2)、(2)如果B不包括其自身,它将满足条件,成为它自己的成员之一;所以,B将必须包括其自身!

(3)、例如:理发师给除了自己以外所有自己不理发的人理发,理发师也给自己理发。

(4)、了解了这个理发师的困惑,这不就是外国版的“自相矛盾”吗?其实,这个“理发师悖论”很容易解决,只需要修改一下理发师的规矩,将他自己排除在规矩之外。然而,罗素悖论是由集合论的基本原理严格推导得来,就不是那么容易解决的了。

(5)、举例子来说,可以加入罗素集合的是:“薛饿热心观众集合”、“运动鞋集合”,因为首先他们满足条件:得是个集合;其次,自己并不是自己的成员。因为“薛饿热心观众集合”的性质是个“集合”,“集合”这个东西又不能观看节目,所以不属于薛饿的热心观众;同理,“运动鞋集合”的本质也是一个“集合”,不是鞋子本身,所以也不是运动鞋这个集合的成员。

(6)、这些系统都可以避免罗素悖论,但原理其实是一样的,那就是“好好把话说全了”。

(7)、这个世界上充满悖论,管理中也充满悖论。悖论本来是一个哲学上一个持续关注的问题,昨天就在想这个事儿,像罗素悖论:“理发师的头谁来理?”如果理发师的头自己来理,这个悖论前提就被推翻了。如果理发师不给自己理,不给自己理发,他的头应该是谁来理?哲学上类似的悖论还有很多,“的上帝能不能创造一块他自己举不起来的石头?”,“神能造出方形的圆形吗?”,“神能把对的看成错的吗?”,“神能找到一件他做不到的事吗?”……有一次,柏拉图把自己假装成守桥人,让苏格拉底回答一个问题,说你要是回答正确我就让你过桥,回答不正确我就把你扔到水里面去。苏格拉底回答:你把我扔到水里面去。悖论就出来了:如果判定苏格拉底说对了,就应该让他过去;如果判定苏格拉底回答错误而将其扔进到水里,那回答又是正确的。这些在哲学上很有意思的悖论问题,现在困扰着管理学家。

(8)、如果这个集合包含自身(A∈A),那么,因为A是不包含自身的集合组成的集合,即A∈{x∉x},那么A应该不包含自身,也就是说A∉A;

(9)、于是有人因此沾沾自喜,认为自己证伪了上帝。

(10)、1918年,罗素把这个悖论通俗化,称为“理发师悖论”:有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。

(11)、罗素悖论由英国哲学家罗素针对集合论所提出来的一条逻辑悖论,描述为:某些集合是以自身做为元素的,例如所有概念的集合F,其集合自身F也是一个概念,所以该集合F是自身中的一个元素;某些集合是不以自身做为元素的,例如所有苹果的集合G,其集合自身不是苹果,所以该集合G不是自身中的一个元素。由此可知,任何一个集合,要么就是属于自身的,要么就是不属于自身的。现构造出一个集合R,R以所有自身不属于自身的集合作为元素,问:R是属于自身的?还是不属于自身的?如果R是属于自身的,则根据R的定义,R不能做为R中的元素,所以R是不属于自身的;而如果R是不属于自身的,则根据R的定义,R一定是R中的元素,则R是属于自身的,由此构成悖论。

(12)、德国逻辑学家弗雷格(Frege)曾在自己的著作中写道:“一个科学家所碰到的倒霉的事,莫过于是在他的工作即将完成的时候却发现所干的工作的基础都崩溃了。”作为逻辑结构,数学已经处于一种悲惨的境地,数学家们以向往的心情回顾这些矛盾被认识以前的美好时代。(Kline,1972)

(13)、那么,如何解决罗素悖论呢?很简单,对于“R是否属于R”此无定义处进行重新定义,属于不属于都可以,或者说此处没有意义也可以,看哪种定义比较适用。数学家构造的理论出现矛盾了,就像人们讲话出现了矛盾了一样,解决的方法很简单:“对不起,我没有注意到这里有矛盾,我重新说明一下,此处应该是如此如此……”

(14)、如果集合A是自己的一个元素,那么集合A就不满足“不包括自己的集合”的定义,不应该出现在此集合中,矛盾;

(15)、所谓的发现观,就是数学理论本来就在那里,就像是客观真理或者上帝旨意,而数学家发现了它。所谓的发明观,就是数学理论本来是没有的,数学家发明了它构造了它甚至可以改变它。

(16)、我认为基于数据和事实的理性分析和决策,本质上是一种批判性思维,这事一种客观的、公正的、态度谦逊的和不带成见的思维方式。批判思维是创造性思维的出发点,没有批判就没有创造;科学管理与创新并非是对立的,二者遵循的是同样的思维规律;科学管理帮助创新发现问题,为创新奠定商业化成功的基础。

(17)、一条线段和一条直线上的点一样多?90%的学霸都不会证明

(18)、庄朝晖,关于对角线方法和停机问题的评论,第五届两岸逻辑教学与研究学术会议,重庆西南大学,2012年4月.

(19)、至此,朴素集合论,似乎在别处仍然成立,所以我们似乎OK。

(20)、所以,管理现在不断地面临这些矛盾和这些悖论。因此,互联网思维也好,创新者的窘境也好,它提出的根本问题是:企业还要不要持续的改良管理?科学管理还有没有用?未来市场和企业谁代替谁?这个问题涉及到企业和市场的关系,让我们回到罗纳德·科斯提出的两个基本问题:“如果通过企业可以消除某些成本,那为什么还会有市场交易?”反之亦然,“如果价值体系能够决定资源分配,为什么需要企业来承担建立和运转这种行政机构的成本呢?

(1)、比如,在小丑乔治的故事里,为了打破悖论,我们必须要将没资格参加自己表演后的宴会的小丑和没资格参加“没资格参加自己表演后的宴会的小丑”的宴会的小丑分开看待,这两个集合是存在“层级鸿沟”的。我们不能像故事中小丑们的逻辑那样:如果乔治属于第一个群体就自动推出他也属于第二个群体。如果罗素也在场,告诉他们这两个群体根本不是一个层级的,不能放在一块考虑,小丑乔治的处境就不会那么尴尬了。

(2)、小说往往能浮现出现实的影子,事实上,科学研究一直在不断地经历各种理论危机。人类科学史的发展,就是基础理论一次次崩塌、再重建的过程。

(3)、刚才听了文跃然教授的演讲,文教授几十年一直从事人力资源管理教学,还创办了几年公司,用自己的经营管理实践告诉大家企业要回归科学管理,要用科学管理去解释人力资源管理的本质。这个也是悖论:如果科学管理能够解释人力资源管理的本质,要人力资源管理干什么?如果人力资源管理不能够解释这些问题,要科学管理干什么?

(4)、这种“明白”绝大部分还都只局限在日常生活的范围之中。

(5)、二是华为公司的运营管理与业界佳实践还存在较大差距,已经成为制约公司市场竞争力提升的短板;

(6)、19世纪末,康托尔发表了一系列关于集合论的文章,他创建的集合论是数学史上具有革命性的理论之令人难以置信又无法反驳。起初他的集合论遭到了很多数学家的批判,甚至有人将他的理论视为异端。终于,在20世纪初,集合论才得到了公认,学界相信集合论是完备的理论,甚至可以说是整个现代数学的基础。

(7)、我们遇到了一个矛盾:“所有‘不’自含集合的集合”,同时必须既“是”又“不是”自己的一个成员。

转载请注明出处阿文说说网 » 罗素悖论的本质107句(罗素悖论怎么解决的)