生命是什么
1、生命是什么读后感
(1)、引证:白居易《武昭除石州刺史制》:“王师伐蔡,尔在行间,致命奋身,挑战当寇,忠愤所感,卒获生命。”
(2)、因此,要说真正独立的生命体——堪称完全独立,能无牵无绊地自由生活的——恐怕就是那些乍一眼看起来相当原始的生命形式了。其中包括微型蓝藻,通常被称为蓝绿藻,它们既能进行光合作用,又能自己捕获氮;还有古细菌,它们能从海底火山的热液喷口获取所需的能量和化学原料。这太令人震惊了:这些相对简单的生物不仅比人类生存的时间长得多,还比我们更加自立。
(3)、对于地球生命来说,在生命体和周围环境之间存在着不言而喻的清晰界限。皮肤毛发包裹着人类的躯体,水里的鱼虾顶着闪闪发光的鳞片或者厚厚的硬壳,树木的躯干上也裹着斑驳嶙峋的树皮。很难想象会存在一种生命,和环境之间有着缓慢过渡的边界。就像我们看不到人体的内脏飞得满房间都是,也不会看到树木若有如无的魅影笼罩成了一片树林。
(4)、宇宙漫长历史中神奇的事件之一莫过于生命的诞生。在前进化论时代,大多数人类甚至认为地球上生命的多彩纷呈是神迹存在的好证明。正如物理学家对理解宇宙起源的“大爆炸”充满了无穷的向往和想象,生物学家对于理解生命诞生这一从无到有的重要时刻也抱有同样的情感。
(5)、生命应该运动吗?“那么冰冻的动物怎么算?”你也许会这么问。“那看上去可不是生机勃勃的样子。”许多复杂的生命体在经历冻融之后仍能存活(譬如人类的人工授精卵细胞以及摇蚊的幼虫)。理论上来说,用那种在原子力显微镜中使用的纳米镊子,我们也能一个分子一个分子地组装出一个冷冻生命体来。
(6)、再现复杂性这个概念直接解决了当初挑战过生命定义的七个大反例。
(7)、当然,即便没有这层薄膜,化学家也仍然可以设想出许多场合能够聚拢能量分子和遗传物质。比如,我们可以设想早的生物化学反应并不是在海洋里进行的,而是固定在某种固体的表面(例如海底矿床和火山),我们也可以设想岩石内部存在微小的孔隙,生命物质可以在空隙里维持很高的浓度。但是不管是矿床还是岩石孔隙,都不会跟着生命自我复制的节奏扩张。生命的终出现,仍然需要有一座分离之墙,一层生命自身能够制造和储备的薄膜。
(8)、源自:网络 | 主播:孟飞Phoenix
(9)、但是,NASA的定义只是希望用简洁的描述去定义生命的众多尝试之一。事实上,如今的科学界提出了超过100种的生命定义,这些定义大多关注生命的一小部分关键属性,比如繁殖和代谢。然而,对与什么才是定义“活着”的重要的因素,不同科学家持有不同的意见。化学家认为生命应该被归结为几个特定的分子,然而物理学家则更偏向讨论热力学问题。
(10)、经典的“临界”个例就是病毒。“他们没有细胞结构,不进行代谢,在没有入侵细胞的情况下呈现惰性,所以有很多人(包括很多科学家)断定病毒不是生命。”法国巴斯德研究院的微生物学家PatrickForterre说。
(11)、这不是一个全新的理论,德尔布吕克曾于1935年提出过类似观点。此外,生物学家穆勒(HermannMuller)和霍尔丹(J.B.S.Haldane)也分别独立提出过染色体可能是其自我复制的模板,复制方式与已有晶层上长出新晶层的过程是一样的。
(12)、疱疹病毒(EB病毒)。图片来源:KaterynaKon/SciencePhotoLibrary
(13)、所以,当你感冒时,病毒会进入你的鼻腔细胞,利用它们的酶和原料来反复多次地繁殖病毒。随着病毒大量滋生,鼻子里受感染的细胞破裂并释放出了成千上万的感冒病毒。这些新的病毒会感染附近的细胞,并进入你的血液,继而感染其他地方的细胞。这是一种有效的策略,可以让病毒持续存在,但这也意味着病毒不能脱离其宿主的细胞环境单独运作。换句话说,它完全依赖于另一个生命体。你差不多可以这样说:在宿主细胞中具有化学活性和繁殖能力时,病毒是活着的,但当它在细胞外作为化学惰性病毒存在时,它又不算是活着的,病毒就在这两种状态间不断切换。
(14)、生命是从一种多聚体类型向另一种多聚体类型翻译的产物(例如从RNA到蛋白质,或从电脑中的比特到DNA)。我们该如何来确定这种翻译的重要性呢?各种精确的翻译关系都比再现复杂性更令人惊叹。我们能够检测两种多聚体在结构特征上的相似程度——计算生物学家将它称为同源性(homology)。
(15)、生命是一种能够生长和自我复制的系统。那么火也可以被视为一种生命,毕竟它也能够生长并自我复制。
(16)、病毒应该被视为生命么?图片来源:Jezper/Alamy
(17)、拥有通过自然选择进化的能力,这是我用来定义生命的第一个原则。正如我在自然选择那一章中所说的,它取决于三个基本特征。为了进化,生物体必须能够繁殖,必须有一套遗传系统,并且,遗传系统必须表现出变异性。任何具有这些特征的实体都可以且必将进化。
(18)、如果是这样的话,那么单个基因突变是如何在分子水平上导致某种特定的宏观结果(如某种表型、可观察到的遗传性状)的呢?答案可能指向薛定谔的猫的幽灵——薛定谔在1953年提出这只猫的宏观生死取决于单个量子事件。
(19)、薛定谔的负熵说暗示我们,生命是开放系统里打破平衡的秩序的集合,而DNA密码只是维系生命机制的一部分。可惜的是,薛定谔并未触及物理学家西拉德(LeoSzilard)在麦克斯韦妖上的研究成果,西拉德的思维实验揭示了如何借助看似宏观统计噪声的分子水平信息来降低熵的混乱程度。
(20)、宇宙万物千变万化,自然界里绚丽多彩,不外乎是生物和非生物之分。从现代科学的角度来看,生命只是物质运动的一种形态,它只是由蛋白质、核酸、脂类等生物分子组成的物质系统而己,远没有古人对生命的理解那么玄妙。
2、生命是什么作文
(1)、引证:郑观应《盛世危言·学校》:“所拘者又复高谈性命,衍说仁义,细析毫芒,而至于钱谷财赋之事,茫然罔晓也。”
(2)、基因组工程将让我们变得更加多样化,由此进一步强化我们的生存前景。我们已经将自身物种的躯体特性进行了几个方面的拓展。举例来说,我们不断尝试着改良我们的健康状况,延长我们的寿命,加强我们的免疫系统和对疾病的抵抗力,诸如此类。我们还能够适应极高的人口密度和宇宙探索时的那种极低的人口密度。
(3)、进化本身虽然并非是从低级到高级,但复杂生命的产生却是长期进化的结果。生命进化漫长的历史中杰出的产物毫无疑问当属人类的大脑。至此,作为神经科学家的立铭用整个下半部进一步展示大脑的功能:感知、学习记忆、社交,并由此一直讨论到哲学上都极有难度的更抽象的概念:我,自由意志。从视觉的神经解码,到语言的生物基础,再到多重人格症以及人工智能,这些精彩的故事呈现出一个已经精彩且在未来会更加精彩的科学世界。
(4)、 我不敢说生命是什么,我只能说生命像什么。
(5)、而在过去的一百年间,定义生命甚至变得更加困难了。一直到19世纪,主流说法都认为,生命区别于非生命的因素,就在于无形的“灵魂”或是“精神”而不同。但目前科学界已经抛弃了这一理论,因为有更为科学的观点取代了它。例如,美国航空航天局(NASA)就把生命定义为一种“符合达尔文进化理论并且可以自我维持的化学体系”。
(6)、动植物的生活能力:生命。救命。逃命。拼命。命脉。性命。相依为命。
(7)、引证:曹禺《雷雨》第二幕:“蘩漪:自从我把我的性命、名誉,交给你,我什么都不顾了。”
(8)、我们知道,能量和自我复制是生命从混乱无序的环境中萌发并万世长青的两个基本条件。生命现象想要存在,必须在局部蓄积起足够浓度的能量,然后用它驱动某种能够携带遗传信息的生物大分子(例如RNA)的自我复制。那么可想而知,如果没有一层物理屏障的存在,能量分子和遗传物质哪怕能够偶然出现,也会像在原始海洋里滴一滴墨汁一样,迅速稀释到无踪无迹。或者反过来说,从46亿年前地球形成开始,能量分子和遗传物质可能已经自发出现过千千万万次。但是必须再耐心等待10亿年,直到第一个原始细胞出现,为能量分子和遗传物质构造起“分离之墙”,并且从那一刻开始,始终包裹在每一个细胞和它们的后代周围,地球生命才真正有可能告别昙花一现的化学反应现象,稳定地存活下来,利用能量驱动生命活动,利用自我复制适应地球环境,开枝散叶一直到今天。
(9)、预测外星生命也是一个棘手的任务。大多数的研究者,包括爱丁堡大学的英国天体生物学中心的CharlesCockell和他的同事们,都在通过地球上可在极端环境下生存的微生物来研究外星生命。他们认为,外星生命生活的环境可能会与我们迥然不同,但它们仍然很可能与地球上的生命共同拥有着生命的某种关键特征。
(10)、生命科学的迅猛发展,有可能会引发一场新的技术革命,对我们的生活、经济都会带来巨大而深远的影响。基因组测序的技术发展很快,未来基因组测序的成本可能大幅度降低,并对医疗行业带来很大的影响。合成生物学也出现了突破性的进展。现在,有些公司在尝试让细菌吃木头,产生酒精,然后再用酒精做能源。基因编辑技术也将出现革命性的突破,但这将引起更多的科学伦理争议。我们必须在进一步推动科学研究的同时,加强对科学伦理的研究和讨论。与此同时,应该加强对科学的普及,让公共政策讨论建立在科学分析的基础上。比如,转基因农作物对人体的负面影响和化学、农药对人体的负作用孰重孰轻,这要用数据和事实来说话,不能限于意气之争,或是迷信阴谋论。
(11)、许多人将生命理解为一种全或无、非黑即白、非正即反、非此即彼的现象,泾渭分明毫无重叠。然而,让我们来设想这样一种可能性:生命或许是一种连续的、可标准化、也可度量的属性。同样的,许多思想家也试图将生命奉为“复杂性的巅峰”。但让我们试着将这句话中的“复杂性”换成“再现复杂性”(replicatedcomplexity)或是“互信息”(mutualinformation)吧。两张由大量随机分布的墨点所组成的图像看上去可能同样复杂,相似之处与不同之处一样多。同样的,两块石头的原子排布形式也许看起来也是一样的复杂。但是如果我们看到的是呈镜相对称的复杂墨点,譬如罗夏墨迹测验[1]中的图案,抑或是一块“有生命的石头”(生石花[2]),我们就会产生这样一种感觉:这么多信息应该不是通过一种可预测的方式从上一张到下一张、从上一片叶子到下一片叶子、或者从每一片叶子中的上一个细胞到下一个细胞这样复制或传递的。两种复杂的随机图案可能是无机无生命世界的一个微不足道的产物,但两种看起来几乎近似的复杂范式则往往是生命的一个标志。
(12)、这一切都表明,生物体有一个分级的渐变光谱,从完全依赖他者的病毒,到更为自给自足的蓝藻、古细菌和其他众多植物。我坚持认为这些不同的形态都是有生命的,因为它们都是自我导向的有形实体,可以通过自然选择来进化,虽然它们也在不同程度上依赖于其他生物体。
(13)、对此,薛定谔提出可以从量子力学的角度解释这个问题。分子中的原子通常以多种方式稳定排列,且每种构型都有对应的能量,这也是薛定谔对不同等位基因的设想。不过,其间的“量子跃迁”通常受到高能垒的抑制。
(14)、生命科学跨越的尺度从纳米到宏大的地球生态系统,宏大繁复,包罗万象。想要从中提炼出生命的基本特质并书写出来有挑战性。不过幸好我们有贯穿生命科学的第一原则:进化论。立铭选择了生命的演化作为轴线,在其妙笔之下,一出跌宕起伏,惊险刺激的几十亿年的大冒险戏剧就此拉开序幕。他先从古代哲学家对生命本质对探讨谈起,之后科学家登上舞台,一个个精彩的科学故事提醒我们人类不断从多维度接近,理解并尝试解析生命本质的曲折过程。之后他把镜头迅速推进到著名的米勒-尤里实验,该实验令人惊奇地证明了生命起源的基本分子,如氨基酸,可以在实验室模拟的古代地球环境里快速产生。该试验基本解决了生命产生的原材料来源问题,随之引申出当代科学三大重要问题之一:生命的起源问题。
(15)、“信息分子的错误复制可能是生命发生和演化的起源,这也因此造成了非生物化学向生物化学的转变,”Bada说。复制,特别是错误复制导致了具有不同能力的“后代”的产生,这些分子后代开始为了生存而互相竞争。
(16)、引证:老舍《骆驼祥子》九:“正和一切的生命同样,受了损害之后,无可如何的只想由自己去收拾残局。”
(17)、但是这些化学物质是没有生命的。只有它们开始进行一些特别的活动,例如排泄,或者自相残杀时,我们才会认为它们是生命。那这些化学物质需要什么条件才能一跃成为生命呢?Bada的答案出人意料。
(18)、更何况,正如作者所言,“此时此刻,我们比以往任何时候都更需要了解生命科学,更需要深刻地理解生命和人类智慧”。
(19)、生命是一个稳定增加的再现复杂性库。一头食草动物确实有可能在毁坏一块复杂的植物生态系统后死去,导致再现复杂性的净流失。
(20)、生命形态是有边界的有形实体|Pixabay
3、生命是什么比喻
(1)、生命是什么?如果是对“生命”这个概念的解释,那么这可能是我们能想象的难回答的问题之学术界也的确没有统一答案。但如果这是个开放的问题,我们便可以在很多有趣的维度解释并充分演绎。立铭此书便是要以一己之力从多个维度提取出重要而又互相承接的维度,并在20万字里把《生命是什么》以层层递进的方式解析。本书的主题比起立铭前两部书更宏大而深刻,所以我称之为“野心”之作。
(2)、生命体能将复杂的高分子化学与线性信息存储结合在一起|Pixabay
(3)、病毒几乎缺乏所有我们认为是生命的条件,除了它们能通过编码DNA或RNA来传递遗传信息。DNA或RNA是生命构造的蓝图,被这个星球上所有的生命所共用,这便意味着病毒可以演化与复制,即便它们只能通过“劫持”其他活着的细胞来完成这些活动。
(4)、尽管我们和所有已知的生命形式都依赖于碳基聚合物,但我们对生命的思考不应该受制于地球上的生物化学经验。我们可以天马行空地去想象,宇宙中其他地方的生命以别的方式运用碳,甚或压根就不是构建于碳基之上的生命体。比如说,英国化学家和分子生物学家格雷厄姆·凯恩斯-史密斯(GrahamCairns-Smith)就曾在20世纪60年代构想了一种原始的生命形式,它会基于结晶状黏土颗粒进行自我复制。
(5)、活着就要创造,就要探索,即使肢体已经残疾,思想的火花也决不停止迸发。这就是生命,这也是许多诗人和艺术家在他们的作品里还没有表现出来的生命的美丽。
(6)、有关生命的主题总是充满神秘难解的特性。爱因斯坦说,“我们所能感受到的美是神秘的,神秘性是一切真正的艺术与科学的来源”。所以,只要对这个世界、对我们自己还抱有好奇和兴趣,都可以试着去拨开生命迷雾,一窥究竟。
(7)、如果不找到其他的生命形式,我们就无法确定我们现在所认为的生命必需条件是否通用。制造人工生命或许可以提供一个新的方式去探索新的生命形态,但是至少在短期来看,任何在电脑中被凭空捏造出的生命都可能会受到我们现有的对于生命系统的偏见影响。
(8)、长久以来,生态学家一直很赞成这种深层关联、相互关联的生命观。这个观点早源于19世纪初的探险家、自然学家亚历山大·冯·洪堡的思想,他认为所有生命都被一个互相连接的网络关联在一起。这种相互关联性是生命的核心,虽然这么说可能让人意外,但应该能让我们有充分的理由停下来,更深入地思考人类活动对生态世界里的其他生命体造成了怎样重大的影响。
(9)、埃尔温·薛定谔(ErwinSchrödinger)1944年的短篇著作《生命是什么?》启发了包括莫里斯·威尔金斯(MauriceWilkins)在内的一大批物理学家,使他们终建立了分子生物学这一领域。薛定谔将生命的概念构筑在所谓的“非周期性实体”(aperiodicsolid)的基础上,同时也将DNA解读为蕴含遗传信息密码的有序生物多聚体。
(10)、这三个原则共同定义了生命。任何按照这三个原则运作的实体都可以被认为是有生命的。
(11)、《生命是什么》是浙大生命科学研究院教授王立铭的第三本科普著作。这次大胆的尝试,既有来自他对理解生命的信念,也来自他对科学写作的自信。
(12)、供我们生息的这个深蓝色星球,大约是形成于45亿一60亿年前,那时的地球在无际的宇宙中只是沧海一粟,并且更是一片死寂的世界,有的只是高热的大气和原始海洋。但随着亿万年地球的变迁,组成生命的物质,同时也是生命存在的基本要素的蛋白质和碳氢化合物孕育而生。
(13)、薛定谔的分析中缺少的一个概念是信息。上世纪40年代和50年代,香农(ClaudeShannon)的信息论以及维纳(NorbertWiener)的控制论陆续问世,填补了这一空白。不过直到近年来,研究人员才开始理解信息对生物学的应用价值。
(14)、当然了,欧福顿的理论听起来头头是道,但是有一个相当致命的技术问题没有顾及到。脂类分子构成的膜为什么不会动不动就突然崩塌,进一步收缩成更小更致密、表面积更小的球?要知道,既然脂类分子在水中的天然倾向是减小表面积,那自身聚集成一个实心球,把大多数脂肪都包裹起来岂不是好的解决方案?
(15)、2010年,科学家发现,有一些微生物DNA中的磷可被砷取代(DNA为脱氧核糖核苷酸链,其中核苷酸中含有磷元素,其中磷氧键参与核苷酸连接成长链核酸),这一发现令天体生物学家激动。这些发现虽然后来受到了质疑,但无疑激励了很多尝试寻找不符合传统规则的生命的科学家,很多人还是会继续抱有希望。
(16)、同时,读者又不必担心这种高度理性的、强逻辑的写作方式太过坚硬,这得益于他极其形象的、叙事化的语言风格。
(17)、生命是一种能够对独特且复杂的对象进行复制的机器(就像激光打印机或3-D打印机)。迄今为止,它们都还不会自我复制。我们可以去制造一些“无关紧要”的自组装型机器人,将两个(或几个)已经足够复杂并几乎能运作的机器人部件组装起来。但是在这种情况下,由自我复制所带来的再现复杂性提升有限,并且那些部件上的再现复杂性也是拜生命所赐(也就是创造了这些机器人部件的聪明人类)。想要在未来的某一天拥有一台能够自我复制和进化的3-D打印机并没有什么实质性的障碍。
(18)、撰文|刘海坤(德国国家癌症研究中心研究员)
(19)、物质、能量、复制是构成地球生命基本的三个要素,可至此,演化的历史已经过去了将近10亿年,第一个独立的细胞还没有诞生。原因是,缺少了能把能量分子和遗传物质包裹起来的结构,也就是细胞膜,王立铭称之为“分离之墙”。一层小小的薄膜勾连出科学家持续300多年的研究历史,这大概是科学探索曲折反复经典的案例之一了。
(20)、生命是什么?关于这个问题,不同的人给出了不同的回答。信徒以为生命是上帝的作品。文学家以为生命是情感的载体。化学家认为生命是一系列化学反应,早期的生物学家并不追问生命的本质,他们关心的是生命是如何进化的。如今,分子生物学家会把生命的基石理解为一系列基因和蛋白组。
4、生命是什么作者是谁
(1)、——以上内容节选自《再创世纪——合成生物学将如何重新创造自然和我们人类》
(2)、本文由施普林格·自然上海办公室负责翻译。中文内容仅供参考,一切内容以英文原版为准。欢迎转发至朋友圈,如需转载,请邮件Chinapress@nature.com。未经授权的翻译是侵权行为,版权方将保留追究法律责任的权利。
(3)、他遇着骄奢的春天,他也许开出满树的繁花,蜂蝶围绕着他飘翔喧闹,小鸟在他枝头欣赏唱歌,他会听见黄莺清吟,杜鹃啼2血,也许还听见枭鸟的怪鸣。他长到茂盛的中年,他伸展出他如盖的浓荫,来荫4庇树下的幽花芳草,他结出累累2的果实,来呈现大地无尽的甜美与芳馨。秋风起了,将他的叶子由浓绿吹到绯红,秋阳下他再有一番的庄严灿烂,不是开花的骄傲,也不是结果的快乐,而是成功后的宁静和怡悦!
(4)、好科普难写,中文世界的原创科普可以达到英文优秀科普著作高度的更少。我个人认为,立铭的作品是中文科普世界里凤毛麟角的存在。这部书的架构和逻辑在英文科普著作里也少见,可见立铭对此做过仔细推敲琢磨。好的科普书重要的作用不是科普知识点,因为知识早晚变得陈旧,重要的是普及科学的思维和判断方式。这一点读者应能从立铭讲故事的字里行间体会到,他总是努力地给读者展现精彩科学发现背后的内在逻辑,从推理到实验验证,丝丝入扣。
(5)、如果把生命比作一座大厦,那么构成大厦砖头瓦块的就是氨基酸、蛋白质、RNA、DNA等物质。氨基酸是地球物质重要的基础,米勒的烧瓶实验尚且可以轻易地造出它们,意味着想要得到这些生命的原材料还不是太难。
(6)、这个解释就是,这层膜实在是太薄太薄了!厚度还不到10纳米,远远低于光学成像的理论极限分辨率200纳米。人类科学家再雕琢自己的光学显微镜镜片,也不可能看到这层膜的样子(胡克在软木标本中看到的蜂巢结构其实是细胞壁,一种植物细胞特有的坚硬外壳)。看都看不见的东西,天知道它存不存在?而当生物学家瞪大眼睛反复看,都没有看到传说中这层膜的样子以后,自然而然会有一批人转而开始考虑其他的可能性。比如,直到20世纪初,仍然有不少生物学家认为这层膜压根就是不存在的,细胞内的物质像胶水一样黏合在一起才不会破碎和稀释。这个解释现在看起来几乎不言而喻是错误的,就算是每一个细胞内的物质可以按照这种方式聚集而不散开,怎么才能防止细胞和细胞之间的“胶水”黏在一起?这种解释仍然离不开一个在物理化学性质上截然不同的“分离之墙”。归根结底,生物学家们是败给了自己“眼见为实”的思维定势。
(7)、但镜像生命不是天马行空的妄想,它是一种真实的可能性。为了让你信服,我会告诉你如何才能将它变为现实。不过在一开始,我们需要先对生命本身的复杂性有一个更加深入的认识。
(8)、薛定谔是一位物理学家。他希望从物理学的角度去理解生命是什么。为什么薛定谔认为物理学能够对理解生命的本质提供独特的启发?这要从什么是物理学讲起。
(9)、但是,哈森迈尔没有放弃生命,没有放弃探索生命意义的理想。他在朋友的帮助下,制造了一艘只能坐一个人的“洞穴号”潜水艇,开始孤身一人在地下千米深处、罕有生命踪迹的洞穴、暗河和湖泊里漫游。为探寻人们未曾到过的领域,他充满热情地工作着。
(10)、2016年雨果奖得主、《北京折叠》作者郝景芳对他的形容贴切,所谓“带着温暖的智者之光”。
(11)、薛定谔进而又提出,这种基因编码分子(薛定谔等人对基因编码分子是较大的蛋白质的观点持怀疑态度)的构型存在多种可能的形式,能够编码大量信息,这种形式的多样性可以提供细胞的“密码本”。虽然每个原子的位置都很重要,但模式却不会重复——薛定谔因此将分子形容为一种非周期性(不规则)固体。
(12)、在薛定谔的时代,科学家还没有完全理解遗传到底是怎么回事。人们还不知道DNA是长链条双螺旋结构,也不知道DNA的内部组成成分,不知道遗传物质是核酸。当时的技术条件仅仅能识别染色体。薛定谔注意到,生物学家会用X射线引发突变。他进一步发现,X射线能够影响到的原子数量很少,但为什么却会引起这么大的影响?X射线照过去,就会让果蝇要么长不出翅膀,要么没有眼睛。薛定谔推测,原子本身不可能带有太多的信息,真正的遗传密码是在基因之中。一个基因包含原子数量之少是无法克服涨落效应的,但是,遗传性状的稳定性来自于基因组的结构。物理学家熟悉的是晶体的结构,而生命的密码建立在非晶体的结构之上。
(13)、Bada是StanleyMiller的学生,他参与了著名的Miller-Urey实验。这个实验在20世纪50年代进行,是早探究生命如何从无生命的化学物质起源的实验之一。他再次进行了这一著名的实验,证明了在放电的条件下,原始地球上存在的化学物质可以产生更大范围的生物相关分子。
(14)、什么是生命,什么不是?我们大多数人可能觉得这个问题并不需要很复杂的思考,很简单啊,人是生命而石头不是。
(15)、哥白尼觉得这套理论过于繁琐,他提出了“日心说”。“日心说”只是一种假说,而且并不能更好地解释天体运行,因为哥白尼假设天体运行轨道是圆形的,现在我们都知道,天体的运行轨道其实是椭圆形的。后来,丹麦科学家第谷观测了大量天体数据,他的助手开普勒利用这些数据,提出了我们现在熟知的行星运动三大定律。再到后来,牛顿认为,三大定律揭示的只是表面现象,还没有解释天体运行的本质。他认为,一个更基本的东西就是引力。牛顿提出的万有引力定律,把开普勒的三大定律做了更简洁的概括,把当时人们所能想到的力学运动都统一起来了。
转载请注明出处阿文说说网 » 生命是什么作文75句(生命是什么)